56 research outputs found

    Modeling body size evolution in Felidae under alternative phylogenetic hypotheses

    Get PDF
    The use of phylogenetic comparative methods in ecological research has advanced during the last twenty years, mainly due to accurate phylogenetic reconstructions based on molecular data and computational and statistical advances. We used phylogenetic correlograms and phylogenetic eigenvector regression (PVR) to model body size evolution in 35 worldwide Felidae (Mammalia, Carnivora) species using two alternative phylogenies and published body size data. The purpose was not to contrast the phylogenetic hypotheses but to evaluate how analyses of body size evolution patterns can be affected by the phylogeny used for comparative analyses (CA). Both phylogenies produced a strong phylogenetic pattern, with closely related species having similar body sizes and the similarity decreasing with increasing distances in time. The PVR explained 65% to 67% of body size variation and all Moran's I values for the PVR residuals were non-significant, indicating that both these models explained phylogenetic structures in trait variation. Even though our results did not suggest that any phylogeny can be used for CA with the same power, or that “good” phylogenies are unnecessary for the correct interpretation of the evolutionary dynamics of ecological, biogeographical, physiological or behavioral patterns, it does suggest that developments in CA can, and indeed should, proceed without waiting for perfect and fully resolved phylogenies

    Spatial regression techniques for inter-population data: Studying the relationships between morphological and environmental variation

    Get PDF
    Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranial form variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies.Área Antropologí

    Spatial regression techniques for inter-population data: Studying the relationships between morphological and environmental variation

    Get PDF
    Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranial form variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies.Área Antropologí

    Spatial regression techniques for inter-population data: Studying the relationships between morphological and environmental variation

    Get PDF
    Understanding the importance of environmental dimensions behind the morphological variation among populations has long been a central goal of evolutionary biology. The main objective of this study was to review the spatial regression techniques employed to test the association between morphological and environmental variables. In addition, we show empirically how spatial regression techniques can be used to test the association of cranial form variation among worldwide human populations with a set of ecological variables, taking into account the spatial autocorrelation in data. We suggest that spatial autocorrelation must be studied to explore the spatial structure underlying morphological variation and incorporated in regression models to provide more accurate statistical estimates of the relationships between morphological and ecological variables. Finally, we discuss the statistical properties of these techniques and the underlying reasons for using the spatial approach in population studies.Área Antropologí

    Integrating Economic Costs And Biological Traits Into Global Conservation Priorities For Carnivores

    Get PDF
    Background: Prioritization schemes usually highlight species-rich areas, where many species are at imminent risk of extinction. To be ecologically relevant these schemes should also include species biological traits into area-setting methods. Furthermore, in a world of limited funds for conservation, conservation action is constrained by land acquisition costs. Hence, including economic costs into conservation priorities can substantially improve their conservation cost-effectiveness. Methodology/Principal Findings: We examined four global conservation scenarios for carnivores based on the joint mapping of economic costs and species biological traits. These scenarios identify the most cost-effective priority sets of ecoregions, indicating best investment opportunities for safeguarding every carnivore species, and also establish priority sets that can maximize species representation in areas harboring highly vulnerable species. We compared these results with a scenario that minimizes the total number of ecoregions required for conserving all species, irrespective of other factors. We found that cost-effective conservation investments should focus on 41 ecoregions highlighted in the scenario that consider simultaneously both ecoregion vulnerability and economic costs of land acquisition. Ecoregions included in priority sets under these criteria should yield best returns of investments since they harbor species with high extinction risk and have lower mean land cost. Conclusions/Significance: Our study highlights ecoregions of particular importance for the conservation of the world's carnivores defining global conservation priorities in analyses that encompass socioeconomic and life-history factors. We consider the identification of a comprehensive priority-set of areas as a first step towards an in-situ biodiversity maintenance strategy. © 2009 Loyola et al.48Margules, C.R., Pressey, R.L., Systematic conservation planning (2000) Nature, 405, pp. 243-253Margules, C.R., Sarkar, S., (2007) Systematic conservation planning, , Cambridge: Cambridge University Press. 278 pCowling, R.M., Pressey, R.L., Rouget, M., Lombard, A.T., A conservation plan for a global biodiversity hotspot - the Cape Floristic Region, South Africa (2003) Biol Conserv, 112, pp. 191-216Smith, R.J., Goodman, P.S., Matthews, W.S., Systematic conservation planning: A review of perceived limitations and an illustration of the benefits, using a case study from Maputaland, South Africa (2006) Oryx, 40, pp. 400-410Loyola, R.D., Kubota, U., Lewinsohn, T.M., Endemic vertebrates are the most effective surrogates for identifying conservation priorities among Brazilian ecoregions (2007) Divers Distrib, 13, pp. 389-396Dinerstein, E., (1995) A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean, , Washington DC: WWF and the World Bank. 129 pBurgess, D.N., (2004) Terrestrial ecoregions of Africa and Madagascar: A conservation assessment, , Washington: Island Press. 483 pLoyola, R.D., Becker, C.G., Kubota, U., Haddad, C.F.B., Fonseca, C.R., Hung out to dry: Choice of priority ecoregions for conserving threatened Neotropical anurans depends on life-history traits (2008) PLoS ONE, 3 (5), pp. e2120. , doi:10.1371/journal.pone.0002120Loyola, R.D., Oliveira, G., Diniz-Filho, J.A.F., Lewinsohn, T.M., Conservation of Neotropical carnivores under different prioritization scenarios: Mapping species traits to minimize conservation conflicts (2008) Divers Distrib, 14, pp. 949-960Loyola, R.D., Kubota, U., Fonseca, G.A.B., Lewinsohn, T.M., Key Neotropical ecoregions for conservation of terrestrial vertebrates (2009) Biodivers Conserv, 18, pp. 2017-2031Mittermeier, R.A., Robles-Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., (2004) Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions, , Mexico City: CEMEX. 392 pOlson, D.M., Dinerstein, E., The Global 200: Priority ecoregions for global conservation (2002) Ann Miss Bot Gard, 89, pp. 199-224Bode, M., Wilson, K.A., Brooks, T.M., Turner, W.R., Mittermeier, R.A., Cost-effective global conservation spending is robust to taxonomic group (2008) Proc Natl Acad Sci USA, 105, pp. 6498-6501Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Global biodiversity conservation priorities (2006) Science, 313, pp. 58-61Mittermeier, R.A., Mittermeier, C.G., Brooks, T.M., Pilgrim, J.D., Konstant, W.R., Wilderness and biodiversity conservation (2003) Proc Natl Acad Sci USA, 100, pp. 10309-10313Stattersfield, A.J., Crosby, M.J., Long, A.J., Wege, D.C., (1998) Endemic bird areas of the world: Priorities for biodiversity conservation, , Cambridge: BirdLife International. 846 pCardillo, M., Mace, G.M., Gittleman, J.L., Purvis, A., Latent extinction risk and the future battlegrounds of mammal conservation (2006) Proc Natl Acad Sci USA, 103, pp. 4157-4161Becker, C.G., Loyola, R.D., Extinction risk assessments at the population and species level: Implications for amphibian conservation (2008) Biodiv Conserv, 17, pp. 2297-2304Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R.P., Multiple causes of high extinction risk in large mammal species (2005) Science, 309, pp. 1239-1241Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J.L., Bielby, J., Human population density and extinction risk in the world's carnivores (2004) PLoS Biology, 2, pp. 909-914Valenzuela-Galvån, D., Våzquez, L.B., Prioritizing areas for conservation of Mexican carnivores considering natural protected areas and human population density (2008) Anim Conserv, 11, pp. 215-223Valenzuela-Galvån, D., Arita, H.T., Macdonald, D.W., Conservation priorities for carnivores considering protected natural areas and human population density (2008) Biodivers Conserv, 17, pp. 539-558Gittleman, J.L., Funk, S.M., MacDonald, D.W., Wayne, R.K., (2001) Carnivore conservation, , Cambridge: Cambridge University Press. 690 pDirzo, R., Miranda, A., Altered patterns of herbivory anddiversity in the forest understory: A case study of the possible consequences of contemporary defaunation (1991) Plant-animal interactions: Evolutionary ecology in tropical and temperate regions, pp. 273-287. , Price P, Lewinsohn TM, Fernandes GW, Benson WW, eds, New York: John Wiley & Sons Inc. ppLaurance, W.F., Peres, C.A., (2006) Emerging threats to tropical forests, , Chicago: University of Chicago Press. 520 pRondinini, C., Boitani, L., Systematic Conservation Planning and the Cost of Tackling Conservation Conflicts with Large Carnivores in Italy (2007) Conserv Biol, 21, pp. 1455-1462Underwood, E.C., Shaw, M.R., Wilson, K.A., Kareiva, P., Klausmeyer, K.R., (2008) Protecting Biodiversity when Money Matters: Maximizing Return on Investment, ONE 3, pp. e1515. , PLoS, doi:10.1371/journal.pone.0001515Naidoo, R., Balmford, A., Ferraro, P.J., Polasky, S., Ricketts, T.H., Integrating economic costs into conservation planning (2006) Trends Ecol Evol, 21, pp. 681-686Davis, F.W., Costello, C., Stoms, D., (2006) Efficient conservation in a utility-maximization framework, p. 11. , http://www.ecologyandsociety.org/vol11/iss11/art33, Ecol Soc, Available(2006) WildFinder: Online database of species distributions, version Jan-06, , http://www.worldwildlife.org/WildFinder, AvailableRondinini, C., Stuart, S., Boitani, L., Habitat suitability models and the shortfall in conservation planning for African vertebrates (2005) Conserv Biol, 19, pp. 1488-1497Das, A., Krishnaswamya, J., Bawaa, K.S., Kirana, M.C., Srinivasc, V., Prioritisation of conservation areas in the Western Ghats, India (2006) Biol Conserv, 133, pp. 16-31Laurance, W.F., Lovejoy, T.E., Vasconcelos, H.L., Bruna, E.M., Didham, R.H., Ecosystem decay of Amazonian forest fragments: A 22-year investigation (2002) Conserv Biol, 16, pp. 605-618Boyd, C., Brooks, T.M., Butchart, S.H.M., Edgar, G.J., da Fonseca, G.A.B., Spatial scale and the conservation of threatened species (2008) Conserv Lett, 1, pp. 37-43Gittleman, J.L., Carnivore life histories: A reanalysis in the light of new models (1993) Mammals as predators, pp. 65-86. , Dunstone N, Gorman ML, eds, Oxford: Oxford University Press. ppCarbone, C., Gittleman, J.L., A common rule for the scaling of carnivore density (2002) Science, 295, pp. 2273-2276Urbina-Cardona JN, Loyola RD (2008) Applying niche-based models to predict endangered-hylid potential distributions: are Neotropical protected areas effective enough? Tropical Conservation Science 1: 417-445Lamoreux, J.F., Morrison, J.C., Ricketts, T.H., Olson, D.M., Dinerstein, E., Global tests of biodiversity concordance and the importance of endemism (2006) Nature, 440, pp. 212-214Pressey, R.L., Possingham, H.P., Day, J.R., Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves (1997) Biol Conserv, 80, pp. 207-219Soutullo, A., De Castro, M., Urios, V., Linking political and scientifically derived targets for global biodiversity conservation: Implications for the expansion of the global network of protected areas (2008) Divers Distrib, 14, pp. 604-613Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Terrestrial ecoregions of the worlds: A new map of life on Earth (2001) Bioscience, 51, pp. 933-938Wilson, D.E., Reeder, D.M., (2005) Mammal species of the World: A taxonomic and geographic reference, , Baltimore: Johns Hopkins University Press. 2000 pPurvis, A., Gittleman, J.L., Cowlishaw, G., Mace, G.M., Predicting extinction risk in declining species (2000) Proc Royal Soc London B, 267, pp. 1947-1952Balmford, A., Gaston, K.J., Blyth, S., James, A., Kapos, V., Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs (2003) Proc Natl Acad Sci USA, 100, pp. 1046-1050(2004) International Financial Statistics, , International Monetary Fund , Washington DC, International Monetary FundCIESIN, I., (2005) Gridded Population of the World (GPW), , http://sedac.ciesin.columbia.edu/plue/gpw, WRI , New York: Palisades. AvailableAndelman S, Ball I, Davis F, Stoms D (1999) SITES v. 1.0: An analytical toolbox for designing ecoregional conservation portfolios. Washington: The Nature ConservancyPossingham, H., Ball, I., Andelman, S., Mathematical methods for identifying representative reserve networks (2000) Quantitative Methods for Conservation Biology, pp. 291-306. , Ferson S, Burgman M, eds, NewYork: Springer-Verlag. p

    Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil

    Get PDF
    This study was funded by the Brazilian National Council for Scientific and Technological Development (CNPq) [grant number 402834/2020-8]. MEB received a technological and industrial scholarship from CNPq [grant number 315854/2020-0]. LSF received a master's scholarship from Coordination for the Improvement of Higher Education Personnel (CAPES) [finance code 001]. SP was supported by SĂŁo Paulo Research Foundation (FAPESP) [grant number 2018/24037-4]. AMB received a technological and industrial scholarship from CNPq [grant number 402834/2020-8]. CF was supported by FAPESP [grant numbers 2019/26310-2 and 2017/26770-8]. MQMR received a postdoctoral scholarship from CAPES [grant number 305269/2020-8]. LMS received a technological and industrial scholarship from CNPq [grant number 315866/2020-9]. RSK has been supported by CNPq [grant number 312378/2019-0]. PIP has been supported by CNPq [grant number 313055/2020-3]. JAFD-F has been supported by CNPq productivity fellowship and the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation (INCT-EEC), supported by MCTIC/CNPq [grant number 465610/2014-5] and GoiĂĄs Research Foundation (FAPEG) [grant number 201810267000023]. RAK has been supported by CNPq [grant number 311832/2017-2] and FAPESP [grant number 2016/01343-7]. CMT has been supported by CNPq productivity fellowship and the National Institute for Health Technology Assessment (IATS) [grant number 465518/2014-1].Peer reviewedPublisher PD
    • 

    corecore